
P -

~~ 

-
~~~~~~

-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I 
t • - -

SECURITY C LA SS 1FICA T1OM ~~F THI S PA :!  ‘~.h.rt ~~e:a E,~z.r.d)

REPORT DOCU M EN T ATtO N P AG E BEFORE C0MPLET1~~G FORM
l 

~~~•. ss~~~~c7~~~~~ R Ec I P S CAT  ALO HUM8 ER

~~~~~~~~~~~~~~~~~~ ~1°”u’ ~7ViI 
S. TY PE OF REPQRT 6 PERlOO COVERE~

I 

¶
~ .,DAPTIVE !XPONENT IAL IMOOThING J I ‘

~~~ 

‘
;~i~~e~~ ~~~~~~~ 

Report
___________ - 5. PERFORMING fl G. REPORT NUMBER

7 8. CONTRACT OR GRANT NuMaE,~(.)

Frederick A.  the 
,j ., ARPR~~& l~2518

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

NØQO14-76-C-M
~ /

9. PERFORMING O R G A N IZ A T I O N  NAME AN D AD DRESS 0. PROGRAM EL L MENT, PROJECT . TA SIC
V AREA 0 UNIT N ERS

Department of Internationa l Relations p~~’
~~~~~ University of Southern California l u / I / i

University_Park,_Los_Angeles,_ CA._ 9000 7 ________________________
ii. CONTROLI.ING OFFICE NAME AND A DDRESS ~~~ç~~Ih~~~-flT BAT ! _____

Organizational Effectiveness Research / 1)  Nov •77 
-

Office of Naval Research (Code 452) ~~~~~“1’y r

800 No. Quincy St.. Arlington. Va. 22217 _________________________
IA.  MONITORING AGENCY NAME 6 ADORE SS(I ( dIfloren l from Controlling Oflic.) IS. SECURITY CLASS , (of thia r.port)

Office of Naval Research Branch 0 e_____ UNCLASSIFIED1030 East Green Street 
, ____________________________Pasedena , California 91106 / ..L. I ISa. OECLASS IF ICATION/OOW NGRA O:NG

I / _
~_/~~ 

SCHEDULE

16. DISTRIBUTION STATEMENT (01 this Report)

“Approved for public release; distribution unlimited.”

-
~~~ rP~ ~~

‘

17. DISTRIBuTIoN STATEMENT (~l th. abstract .nt. r .d In Block 20, II diul. r.nt tram R.port ~ JAN 
-
~

“Approved for public release; distribution unlimited.” II
~~~ U

IS. SUPPLEMENTARY NOTES “
~~“ ~ ~~~

I

IS KEY WORDS (Cenignu. on r.v.r.. .ld. If n.ce...a~ td ld.ntlly by block nimib.r )

Adaptive, Early Warning, Monitoring, Forecasting, Pred iction ,
Heuristic, Model.

20.\~~SST RA CT (ConIt nu. or, ray,, ., aid. it n.c...ory aid Id.ntlty by block n~~~b.,)

LU The adaptive exponential smoothing technique, and its utility
• •for international affairs analysis, is discussed . Both monitoring

____ 
U.. . and forecasting aspects of the technique are described. Calculation

procedures are illustrated and/worked through’~~in an example
using international event/interaction data.

DD , “i,, 1473 £01 T ION OF I NOV 65 Ii OI SOLI1’ I UNCLASSIFIED
S/N 0 10 2 .0 14 - 6 50 1

CURITY CLA SS IF ICAT ION OF TillS PAGE (W),e.~ Oaf. tnt. rad)

~~~~~~~~~~~ . -.- —~~—.~---,- -~~~~~ - --- - .. — - - - —



‘‘  ‘~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

7tn ternattonal Relation Resea rch tnst itut~~~~~~~~School of internat ional Relaton s
Univers i ty of Southern Cal ifornia

November, 1977
+ 

~ . . ~ect io fl ~~ ‘r

-
( 6~I f Section [1

- ‘;
~~~~ 

— ‘ . . .

r~ ’~ :~‘~!i ~.L~UTY C~UES
- . ~~~~ s~~iAL’

L~~H
ADAPT IVE EXPONENT IAL SMOOTHING
TR&A Suppl ement Report #1

Threat Reco’gnt -tfon - and Analysis Project

I

“Approved ror pub i Ic rel ease; Distr ibut Ion Uni imited .”
Reproduct ion in whole or In part is permitted for any

t - purpose of the United States Government. This research was
supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by ONR under
Contract No. NOOO1~ -76-C-O137. The v iews and conclu si ons
contained in this document are those of the authors and
should not be interpreted as necessaril y representing the
officia l p olic ies , ei the r expressed or impl ied, of ~the
Advanced Research Projects Agency or the U.S. Government .

~~~
- ;~~

-, -—
~~~~~~~



- + +-~~ --- -~~~~~~~~~~~~~~~~~ —--—--+-. - ------- ~~~--~~~~-—-~~~~~~~ .-..— - ------ --

-5 - -

PAGE 1

- - ADAPTI VE EXPONENTIAL S?IOOTRING
Frederick A , Rothe
International Rela tion s Research Institute -

U n i v e r s i ty  of So uthern California
N ovember , 1977

The adaptive exponential smoothing technique  cu r r e n t l y  in
use at the Internationa l ge ] .a tioa s Research Institute is the
subjec t of this writing. Developed originally by Herbert
Calhoun (McC].elland , et. al., 1971) for the WEIS research
endeavor, it is  now being refined and tested for early warn in g
research and analysis applications. Not as technical as the
Calhoun repo rt, this -d iscussion seeks to pres ent a clear and
parsimonious . xplanation of wha t adap t ive  exponent i a l
smoothing is and why it is useful for early warning resea rch
in inte rna tional affairs. The reader is referred to the 1971
WEIS report (~1cClelland , at .  a l . )  for Calhoun ’s theoret ical
discussion of the technique and to Richard Beal’s (1977)
applica tion of it to international crisis analysis. For
further th eoretical treatme nt, the basic work by Brown(1962)
shoul’l be consul ted. Wheelwright and Nakridakis(1973) give an
excellent discussion of its utility in an applied management
setting. First is a general discussion of exponent ial
smootàing and its usefulness as a forecasting method using
event/interactio n data .

At the Internationa l Relations Resear ch Institute,
exponential smoothing is used to analyze event flows; that is,
the pattern an I  dynamics of avent,interactio i data. A basic
concep t orienting this analysis is that the present condition
of the event flo w is the best indicator of what it will be in
t~,e future. The inde pendent v ariable is the event flow at
tine T and the de~endeat variable is the event flow at tine T
• 1. In conlunc t io n with this concep t is the pract ical
need , in monitorin g and forecasting , to monitor trends in the
recent past in an effort to “look ahead” and project the
tendency of the event flow. Again , event flow patterns in
recent history are pro bably the best clues for what they will

S be in the near future. Tile inte rvals usualLy range from one
week to one mon th, meaning the predicted value is projec ted +

ahead by a snail  lea d time(one to four wee ks). Predicted
va lues a re  mad . e for one to three tine intervals ahead.

F 
+ 

Expcne ntial smoo thing seems very a ppropria te for this type of
analysis, where the current char acteristics and the
historically recen t trends in the event flow are most salient
for projecting fut ure characteristics and tr ea ds.

~xponen -tial smoothinq has a central use in nodei.linq S

technique s also, pa rticularly as used by Forrester and his
associates(Forrester , 1961). Although the exponent ial
snoothing technique is the same in systems d ynamics, placinq
most emph asis on the most recent data points and less  and less
on more historically distant data points, the applicat ion is
somewhat different . Systems dynamic s applications smooth  da ta
to be placed in a nodal maki ng long term prolections .

— . S - -~~~~~~~~~~~ - —- - ~~~~~~ -,~~~~ -~~- -— ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Althoug h the systems dynamics expon en tial smoothing technique
is the same as the smoothing method discussed here , tne
systems dynamics appl ication of smoothing is not appropriate
for event flow analysis.

Exponen tial smoothing is in the “naive ” category of
forecasting techniques discussed by charles Roos (1955). Naiv e
techni que s are unsophisticated and are simple projections.
Techni que s in the naive  grou p are guesses, rando m met hods.
trend projections, and autocorrelation. Expon ential smoothing
is a trend projection technique and clearly belongs in this
category. E xponential smoothing is an averagin g technique and
is siniliar in that regard to the well known and frequently
used movin g average method. Both techniques av erage a
specified n umber of previous values in the data to make the
prediction. The main difference between the two techniques is
tnat ~xponential smoo thing adds weights to the most recent
value s to make the prediction while the mov ing average
technique does not. The basic idea in the smoothing method is
that the most recent va lue of the data is more critical for
ma king the prediction than historically remote values.

The chief advantage of the moving average technique is
its simplicity. The predicted values are the averages of
previous observe d values, Disadvan tages are that it cannot
correct for tren ds or cycles, it does not emphasize the most
recent or curren t observed value, and the entire data sequence
must be store-I and used in the calculations. Exponent ial
smoothing , on the other hand , can correct for trends and
cycles , does give weight to the most recen t observed value.
and does not req uire the entire data history to be stored for
computations . In addition , although more complex than the
moving average -technique, it is still easy to use and
interpret.

The mai n assumption inherent in both of these forecasting
techni ques is tha t there is some und erlying patter n in the
values of the var iable to be forecast. Tha values of the
var iab le  represent not only the unde rlying pat tern , but random
f luc tua tions as we ll . Both of these method s seek to
dist inq ui sh between the random fluctuations or “noise,” and
the basi c underl ying pat tern in the observat ions of the
variable. By “smoothing” the cbservations of the variable,
extreme fluctua tions in the data are eliminated. The forecast
is based on the smoothed intermediate values. A forecastin g
method is succesful if it mi ni mize s the d i f f e r ence between the
observe d and predicted values. This is to say a su c:esful .

- - fo recas t i ng  technique proj ects  the pat tern ii the  dat a fair] .~closely to what the pattern actually is. 5~ smoothing the 
+

data and filterin g out the noise, the expon ential smoothing
+ technique minimizes the error between the observed and

predicted values.

in e xponential smoothing , ran dom fluct~iations are
filte red out of the data by averagin g and ~y adjusting thm
smooth ir.g coefficient in the expone ntial smoothin g model. By

_ _ _ _  
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weighting with the coefficie nt the curren t value of the data,
noise is filtered out of the data and estimates of the
underlying process can be made. ‘ost simply, exponential
smoothing takes the weighted average of several  observed
values, and combines that with the weighted, current observed
value to give the next predicted value of the var iable. Below
is the na sic exponential smoothing model.

+ Ti+ 1 = (1—a ) Xi + au

where
a = smoothing coefficient (0 <= a <= 1)
Y = the last exponentially weighted average
x = the current obser vation in the sequence

A h ypothetical data set will demonstrate how the
techni que works. Values are placed in the model to generate
the predicted values of the sequence. To get the first
projected value, the average of the first three data points is
calculated . The data are 43 , 28. 35, 37, 22. For this
examp le , the smooth ing  coefficie nt is set ar bitrar ily at .1.

x = L 4 3 + 28 + 35 = 106
X 35.33

Va l u e s for a(the smoothing coefficient) are included with
the most recen t data point  to genera te  the predicted value.

Y i+ 1 = .9 (37)  + .1(35.33)
Yi+ 1 = 33.3 + 3.53
yi+ 1 = 36.83

The same process is fol lowed for  t h e  n ext iter at ion.

yi+ 1 = .9(22)  + .1(36.83)
?i+ 1 = 19.8 4. 3.62
!i+ 1 = 23.L$8

The two calculated values(36.83 and 23.4 8) are the
projected valu es for the fou r th  and f i f t h  t ime periods of the
da t a  sequence. The f irst  three ti me periods hav e no pr o jected
va lue s since the f i r s t  three ob served values are  used to
calcul ate the in itial average used in the f o u r t h  t ime  period.
Observed and pre dicted values are disp layed below.

‘43 S
p 28

35
37 36. 83
22 23.4 8

smoothin g  c o e f f ic ient s are e st imated for t he  dat a bein g
an a ly z e -I . E a n on e n t i a l  smoothing models are not genera l ize d
for use on any and all data. Each smoothing ~odel is designed
to fi-~ the data being analyzed . Brown writes that exponentia l

~~~l.__ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - .TT  -- 
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?A GE 4

sm ooth ing star ts  with “ goo d clean data and a reasonable model .
to represent  the process being fore cast. The m o d e l  is f i t ted
t o the da ta ; tha t is , the coeff icients  in the model are
e s t imated  from the data available to date. So far , the
proble m is a simple curve—fitting problem. The differen ces
are two. (1) The model should fit current data vary well, but
it is not imp o r t a n t  tha t  data obtained a. lonq t ime  ago f i t
well . (2 )  The compu tations are repe ated wi th  each new
ob servat ion ” ( 19 6 2 : 8 8—8 9 ) .

~ major difficu lty is estimating the coefficient valu e to
put ii the model , since a particular method is not  a v ai l a ~ la
for finding the coeff ic ient val ue . A well adv ised techniqu e
is to get  to “k n o w ” the data by analyzing it with descriptive
statistics. Once the p at te rn  and stabilit y of t h e  data are
known , the coefficients can be placed in the modal, keeping
this thought i i  m i n d : “If the f orecasts are to be s tam le  and
are to smocth out random fluctuations, we have shown that one
should use a small smoothing coefficient or a large number of
observations in the a veraqe....On the other hand , when one
wants rapid response to a real change in the patter n of the
observations, then a large value of the smoothing constant is
appropriate” (Wheelwr ight and ~akridakis, 1973: 118). The best
way to find the appropriate coefficient value is on the anvil
of experiment. Different values of the coefficient should be
tried until the one is fou nd that minimizes the difference
between the ob served and predicted values.

tip to this point, this discussion has mean concerned with
a single model that fits relatively stabl e data and is first
order. In the above demonstration , a single model using first
order exponen tial smoothing was used to calculat e -the
predic ted values. First order means the predicted values are
deri ved from -tne observed values. A problem with first order
exponential smoo thing, whatever the smoothing coefficient, is
the “smoothed averages will, general ly la g behin d a steadily
rising or fallin.~ trend , resultin g in a ctnnulative error in
prediction” (C-alhoun in McClelland, et. al., 1971: 278).

+ Second order smoothing is used to correct this error by simply
smooth ing over the first smoothe d aver ages using the same +

weig h ting scneme. This trend correction factor is the
difference between first and second order smoothing . The
seccnd order avera ge is found by smoothing the f i r s t  order , as
fo l lo ws:

Z i+ 1 = aTi • (1—a)Zi— 1

r where
a = smoothing coefficient (0 < a <= 1)
V = the last exponentially smoothed average
Z = the second order average

— Secon d or~Ier smoothing is demonstrate-I below , using the
same hypothetical data as before, and their predicted first
order values. 
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3RI~ I N A L  PREEI CTED
OBSERVED FIRST ORDER

L13 35,33
28 35.33
35 35.33
37 36.83
22 23.48

The first iteration is calculated below.

Zi+- 1 .9(36.83) + . 1 ( 3 5 . 3 3 )

Z~.•1 = 33.74 • 3.53
l i+- 1 36.67

No te that 35.33 is the average from the f i r s t  th re e
obse r ve d values.  In the f irst  iteration , it is used as the
last exponentially smoothed average. The first order average
is used in place of the second order avera ge on the first
i te ra t ion  also . I tera t ions  following the f i r s t  are calculated
using  the second order average and the las t exp onentia lly
sw oo tned average . The next iteration is calculated below.

Z i+ 1 = .9 ( 23.4 8) • .1(36 .67)
Z i+- 1 = 21.13 • 3.66
li+ 1 = 2 4 . 7 9

Second order observed and predicted values follow.

43 5

28
35 S

37 36.67
22 214.79

In this hypothetical example , the second order pr edicted
value 3 are not as close as the first order predicted values.
The reason is that  second order smoothes the first order
predic t ions, causing second order pred ictions not to f i t  the
ob serve d val ue s as closely . Second order smoo th ing  minimizes
the cumula tion error in first orde r, caused by steadily rising
or falling trends, however.

Third order exponential smoo thinq can be used also.
Third order is applicable when no steadily rising or falling
t rend s are obser ve d in the data. Th ird order proj ected values
are  not as close to the observed values as the other orders ,
because thi rd  order smoothes the second order pr ojecte d
values. Third order smoothing is calculated the same as the
other two, excep t that it uses the last exponentially smoothe d
secon i order value and the third order average (after the first
ite ra tion) .

In  man y wa ys, first order exponential smoothing using on~
model ma y not be su itable for data used in inter nationa l

-~~ 

- + affairs research . First, the data may change substantially
over time , thus makin g the initial smoothing model obsel~te,

— ~~~~~~~~~~~~~~~~~~~~~ —-5-- 
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and second , man y of the changes or sudden pertur bations in the
data w ay be substantive and should not be discounted as
“noise” or ran low fluctuations. Calhoun recogn ized this (1971:
285—291) and develope d four models that are designed to fit
different variations in event interaction data. Ca].houa
developed these models in respon se to the basic premise of
most prediction models. Prediction models are designed to fit
two compon en ts of the data.. One componen t is the underly inq
pattern , or permanent component, and the other is th e noise,
or random component. Departures from one of these compone nts
in the da ta , in the form of abrupt shifts or discontinuities,
usually destroy the reliability of the predictive model.
Discontinuities and abrupt changes in event/interaction data
are substan tive and should be inco rporated into the predict ive
models. Throuqh analysis of the discontinuities in the WEIS
data , Calhoun discovered four separate com ponents of the data.
Each compon en t of the data is heated with a separate
expone n tial snoothinq model for its unique qualities.
Therefore, when a discontinuity in the data is encountered , it
is treated not as either the permanent or random component ,
bu t  as a separate substant ive com ponent. Another insight of
the notion of different but not random components in the data
is that much of the ra ndomne ss in internat ional relat ions data
“appears to be an integral part of the phenomena . Attempts to

- + compensate for ran do mness or to dc—ran domize are tantamou nt to
throwi ng away the most essential parts of the data” (Calhoi n in
McClelland, et. al., 1971:285—286). Other models may be
necessary to fit the many variations of the data, or the
models themselves ma y have to be adjusted. Admittedly
experimental , tne models are:

(1) The moderate up—dow n fluctuation model:
moderate volu me which is relatively autocorrelated.

(2) The random drastic upturn —down turn model:
moderate to low volum e with isolated pea~cs of
three standard deviations or greater.

(3) The gradual monotone upward or downward model:
moderate to high volume with a definite trend
component.

( LI ) The drastic up—down model : setii—autocorrelated
with pe aks and troughs of two standard deviations
or more . (Ca.lhoun in NcClellan d, et.al., 1971: 285)

?~odel i is one that occu rs frequentl y in the WEIS data.
I t  describes oasically the routine, ongoing,  maintenance
activity in the syste m, - a dyad , or groups of nations . Few
disturbances occur in the data of this model . One standar d
deviation is the operationa l threshold value for the model.
If the standard deviation is exceeded at any point in time ,
then another of the smoothing models is invoked . ~o1el I isd-~fined operationall y as the model whose smoothin g parameters ,
X and Y(from the earlier part of this writing) , remain -d it bin
a ranqa of one standa rd deviation from one point in time to

- - -
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P A G E  7

the next.
- 

Model II is difficu lt to predict. Patterns of data
suitable for this model are infrequent but usually signal
importan t occurr ences. It is designed to ca pture departures
from the routine activity of the data. It is based on the
difference bet ween the previous observed and predicted values.
These differen ces are determined by standar d deviat ions also.
with the difference between the observed values be ing greatert~an three standar d deviations and the difference between the
predicted and obser ved values being less than two standard
devia tions.

Model III is much like Model II but requires the data. to
have a definite upward or downward trend. If a trend has
occurred over the last four or fewer time periods, the latest
three time periods are detrer~ ed and the smoothing equation issimila r to Model II. If no trend exists, then Model II is
invoked.

Mode]. IV finally, is a severe case of Model I. Thr eshold
+ value size is the chief difference between the two models.

Model IV tests to see if smoothing param eter X , the difference
between obser ved values, is greater than three standard
deviations and parameter Y, the difference between observed
and predicted values, is qreater tha n two standard deviations.

each da ta point is tested against these models. If the
conditions for a model are met , then its appropriate smoothing
equations are invoked . If the conditions for one model are +

not met , the condit ions for the next are tested. This
proced ure con tinues until one model is invoked and the
predic tion is wade. In this fashion, the basic exponential
smoothing technique adapts to changes in the data, and inv okes
the smoothing model taat fits the characteristics of the da ta.

An example of the output from the adaptive exponentia l
smoothing program in use at the Internat ional Relations
Research Institute is presented shortly, but first the
ope rational forms of the fou r modals are given .

Ii.
- 
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MODEL CONDITIONS

I. Moderate Up—Down IFI <= la and IP I <= in

II. Isolated Drastic Upturn IFI =>3 a and ~~ <= 2a
or Do hnturn

III. Gradual Mono tone (IFi => la or IFI <= 3a) and
Up and Down (IPI => la or IP I <= 2a~

IV. Drastic Up -Down U I  ) 3a or IPI > 2 Sa

where F = (Xi — Xi—1)
- P =  (Ti — li)

a standard deviation
X observed value

= predicted value

Below is the output taken from a PLI program wr itten by
the author and Richard S. Beal. It is a descendant of
Calhoun ’s PLI / PS interactive proqram and 3eal’s BA S1
la nguage prog ram . The data are from Professor Charles
McClelland’s EF133 Index . The Event Flow Indicator (EFI),
version 33, was developed by McClellan d to be used for
monitoring and early warning . It is a measure based on the
volume and variet y of activity in the intern ational system.
After consideranle experimentatio n McClellani has settled on
using eight of the major event (COMBEVENT) categories, out of
the possible 22 in the WEIS collection , for the EFI
calcula tions. McClelland(1976) has demonstrated that when the
EFI score drops below 500, there is a dangerous situat ion in

S the inte rnational setting. Score s from approximately 5-30 to
500 are interprete d as possible precursors or earl y warning of
dangerous situations. The observed values iti the example are
EF133 scores, calcu lated from The TIMES of Londo n data on a
weekly basis, beginning on January 2, and ending on Oct ober 1,
of 1977.

7

—5- .
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DATE TIME MODEL OBSERV ED ESTIMATE RESIDUAL ~~R E S I D U A L
= 770108 1 0 686.80 0.00 0.00 0.00

770115 2 0 684.10 0.00 0.00 0.00
770122 3 0 696.30 0.00 0.00 0.00
770129 4 2 6114.30 700.32 —86.02 —14.00
770205 5 3 586.20 568.31 17.89 3.05
770212 6 1 559.20 575.149 — 16 .29 —2.91
770219 7 1 560.60 55~ 67 9.93 1.77
770226 8 2 6014.70 476.37 128.33 21.22
770305 9 3 566.70 543.09 23.61 4.17
770312 10 2 643.20 498.14 145.06 22.55
770319 11 3 686.20 621.24 614.96 9.47
770326 12 3 596.60 714.32 —117 .72 —19.73
770402 13 3 643.80 581.74 62.06 9.614
770409 14 3 579.00 637.30 —58.30 —10.07
770416 15 3 602.50 5141.83 60.67 10.07
770423 16 3 620.80 567.13 53.67 8.65
770430 17 3 573.60 604.45 —30.85 —5.38
7 7 0 5 0 7  18 2 6 7 5 . 0 0  5 3 5 .14 1 1 3 9 . 5 9  20.68
770514 19 3 6141.90 692.23 —50.33 —7.84
770521 20 3 520.70 663.57 —142.87 —27.1414
770528 21 3 579.80 459,29 120.51 20.79
770604 22 3 589.70 526.15 63.55 10.78
770611 23 3 552.00 558.54 —6.514 —1.19
770618 24 3 582.60 505.147 77.13 13.24
770625 25 3 611.90 550.43 61.47 10.05
770702 26 3 626.20 608.75 17.45 2.79
770709 27 3 653.80 642.30 11.50 1.76
770716 28 1 659.00 656.97 2.03 0.31
770723 29 2 528.00 698.78 —170.78 —32.35
770730 30 3 535.80 L488.95 146.85 8.74
770806 31 3 597.80 469.29 128.51 21.50
77 0813 32 3 56~4.l0 572.92 —8.82 —1.56
770820 33 1 558.50 561.98 —3.48 -0.62
770827 34 1 552.60 555.60 —3.00 —0.54
77090.3 35 2 593.70 521.74 71.96 12.12
770910 36 3 628.50 585.68 142.82 6.81
770917 37 3 603.50 6514.02 —50.52 —8.37
770926 38 3 6143.50 622.69 20.81 3.23
771001 39 2 512.80 680.76 —167.96 —32.75
771008 40 3 0.00 1474.43 0.00 0.00
771015 41 3 0.00 716.21 0.00 0.00
771022 42 3 0.00 418.25 0.00 0.00

No models are invoked and no estimates are made for the
first three time per iods. AS in the abo ve example , values for
the first thre e time periods are used to calculate the initial
average for the predicted (ESTIMATE) value in tim e per iod 4.
Observed value s for time periods 2, 3, and 14 are used to make
the prediction in time period 5 and so on.

Calhoun real ized that exponenti al snoothinq, as a
curve-fitting -techn iq ue , did not make pro lections ahead.
This means tha t after the initial average was calculated from
the first th ree observed values , the fourth observed valu e was +

used to calcula te the first predicted value , also in the

- + 
L~~~~~~~~~~~~~ + ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
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four th time period . Calh oun altered this so the third
- - observed value is used , af ter the calcula tion of the avera qe,

to cnlculate :he first predicted value irL the fourth tim e
period. Calhoun ’s smoothing technique is designed to fit the
pattern of the data and to project the next value. Therefore,
in tiu~e pe riod 40, the predicted value(ESTIIIATE) is calculated
from the obser ved value in time period 39. Tim-~ periods 40,
41 , and 42 contain no observed values because the dat a ended
in time period 39. Predicted values are still made by
assigning the E S T I M A T E  value from time period 40 to OBSERVED
time pe riod 40. Thip is used to calculate the ESTIMATE in
time period 41. The same procedure is followed for the
desi red amount of predictions.

~cdel 2 is the model invoke d in time per iod 4•  It’s
condition s ar~ calculated in the following fashion .

770101 686.8
770115 684.1
770122 696.3

MEAN (M) 689.06
- S T A N D .AR D D E V IA T I O N ( S D ) = 5.21

F = 614.30 — 696.30 82.00
P = 689.06 — 696.3 = 7.24

Both the mean and the standa rd devia tion are calculated
in movin g groups of three. Prom the earlier discussion , F is
the difference bet ween OBSERVED (T) and OBSERVED (T-1), an d P is
the difference between ESTIMATE (T-1) and OBS ERVED(T-1). The
prog ram calculate s these in “absolute” differences , t h u s
elimi nating all negati ve values.

Model 3 is invo ked in time period 5 and the calculation s
of its parameters are displa yed below.

770115 684.1
770122 696.3
770129 614.3

= 6414.9
-. - SD 36.13

F = 586.20 — 614.30 = 28.10
P = 700.32 — 614.30 86.02

Finall y, calc ulations for parameters in time period 6 and
Ilodel 1 follow .

770122 696.3
770129 614.3
770205 586.2

(‘1 = 632.27
SD = 146.71
F = 559.20 — 586.20 = 27.00
P 5 7 5 . 4 9  — 559.20 = 17.89

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1-
~~~~~~~ 
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Cal houn ’s smoo thing equations are developed , throuqa
tasti q simu la t ed  data and intuition , to fit the unique
qualities of event/interantion data. The different gualit ies
are rep resen ted by the four models. The equations used in the
PLI proq ram are not exactly like those discussed at the ou t set
of this paper, øut are desiqned to make the best fit (miniwize

— erro r) for each of the models. Calhoun expec iaented wit h and
tested the models until he found these four , whic h repres ent
the four different components of the data . :alhoun developed
his smoothing eq uations based on the work of other s (Calhou n in
McC].elland, et. al., 1971: 295). He tailored his equations
wi th a correction fantor that adds or subtract s a
prede termined amoun t from the previousl y smoothed average.
C~~rrec tion of tac  data was suggeste d by the constant movement

F in the values of the data over successive time periods. The
smoothing equation s are presented here in their  operationa l
form . The main smoothing equation for first order is given
f ir s t, follo wed by its extension for each of the models.

FNA = ( . 9  * OBSERVED(I—1)+(.1 * E STIMATE (I—1))
FNB = (.1 * PNA ) + (.9 * NEWME PAN )

M O D E L  I
E S T I M A T E ( I )  F HA + (.1 * ( F N A  — F N B ) )

MODEL II
E STIMPtT E (I) PSi 4 (.9 * (FNA — F N B } )

MOD E L  III
E STI~ ATE(I) = PSA + (.9 * (FN A — FNB))

MODEL IV
E S T I M A T E ( I )  F N A  + (~ 3 * (FNA — FNB) )

?NA and FNB are variab les use d to hol d the results of the
equa tion s, and I is the time period. For example , in the
first iteration I is equal to 14 because the orediction is for

• time pe riod 4. NEWM EA N is the new moving average calculated
for each new group of three ti me periods. The first two
equa ticns are comp uted for every iteration throug h the data.
They are then placed in the equa tion for each model and the
predicted value comes from these equations. Important here is
the calculation for second order smoothing . FNB is
substituted for NEWMEAN , thus smoothing over the first
avera ge. The first two equa tions then look like this.

FNA = (.9 * OBSERVED (I—1)+ (.1 * ESTIMATE (I—1))
F~ B = (.1 * P5k) + (.9 * FNB)

• The first equation , FlU, is the regu lar smoothing
e qua tion , iden tica l to the one displa yed in the b eg inn in g of
the pa per. Equation FNB was deve loped by Calhou n to furt her
smoo th the data and was derived from his experimentation with
t a C  ~EIS data. This basis smoothing procedure is tailor made
for the WEIS coLlect ion , thus fu lfillin g the ~ajor requ irement 
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of exponen tial smoothinq to fit the data being analyzed.

E xamoles ~f the :alculations f o r’ time per iods 4, 5, and 6
of the example follow. These calculation s were done by hand
wi th the aid of a ha nd calculator, and they are not as
accura te to the last decimal as the calculations done by the
compu ter.

TI ME MODEL OBSEE V ED ESTIMATE
1 686.80 689.07
2 6814.10 689.07
3 696.30 689.07
14 2 614.30
5 3 586.20
6 1 559.20

Model n u m b e r s  are from the earlier calculations and the
ESTIMATE values are the mean for the first three time periods.
F~ B is calcula ted twice in the first iteration because this is
second order. after that , FNB is placed in the calc3 lations
from the pre vious time period.

First iteration for Time Period 4:

P5k = .9(696.3) + .1(689 .07)
= 626.67 • 68.907

£2~~~~~~~
577

P55 = . 1 (695.577) + .9(689.07)
= 69.577 • 620. 163
= 689.720

FNB is calculated again on the first iteration.

FNB = .1(695.577) + .9(689.720)
= 69.577 + 620.7148

6jQ ~~2~
Model II is invoked in tu e period 4. -

ESTI MA T E a 6 9 5 . 5 7 7  + . 9 (695 .577  — 690.325)
* p95.577 • .9(5 .251)
a -~~5.577 + ‘4.726

70 .O..IQ

Second iteration for Time Per iod 5:

FlU .9(614.3) • .1(700 .30)
= 5 2 2 . 8 7  + 7 0 . 0 3

ñ22alQ
• P N B  .1(622.90) • .9(690.325)

= 6 2 . 2 9  • 6 2 1 . 2 9 3  —

~~~~~~L1

Mcdel III is invo ked for time period 5.



F - - - 

~~~~~~

- - -

~~~

---

~~• ;

PAGE 13

E STIMAT E = 622. 90 + . 9 ( 6 2 2 . 9 0  — 683.5d3)
= 622. 90 + . 9 ( — 6 0 . 683 )
= 622. 90 - 5 14.6  14

______

Third iteration for Time Period 6:

F N A  = .9(586.2) • .1(568.28)
= 5 2 7 . 5 8  + 5 6 . 8 2 8

14 08
F _NB = .1(5814.408) • .9(683.583)

= 5 8 . 1 4 1 4 0  + 615 .  224

Model I is invo ked for time perio d 6.

E STIMAT E 584.408 + .1(584.408 — 6 7 3 . 6 6 5)
— 

584.408 + .1(—89.257 )

5 8 4 .40 8  — 8.925
• 575~~~ 8

It bears repeatin g that the OBSER V ED value used in each
calcula tion is from the previous time period. On the last
ite ration , the OBSERVE D is 696.3, f ro m th e thir d t ime period,

— used for calculatinq the ESTIMATE value in the fourth time
pe riod . The final underlined fig ure for each example is the
predic ted (ESTIMATE ) value for each of the time periods.
Except for the last decima l places, these values are ident ical
to those calculated by the compute r in the above example.

Residuals a re  use d to analyze how closel y the predicted
values n t the observed values. In time period four, the
residual is -86.02, but it is difficult to interpret w hat the
-86.02 means unless  it can be com pered to other residuals.
For this reason , the %RESIDU AL value was added. %RESIDtJAL is
calculated by dividing the residual by the observed valu e and
multiplying the quotient by 100. Time period 14 is calculated
below as an example. -

%RESIDU&L = (BESICUAL/OBSERVED) * 100 —

~RESID(J AL = (—86 .02/614.3) * 100
%R E SI DU AL = —.14 * 100
%RE SIDUAL = —14.00

~RESID11AL qives the percen t difference between the
observe d and predicted values, while -86.02 appears t•~ be a
lar ge “miss” for time period ‘4, the %RESID UAL indicates the
ESTIMATE value “mi ssed” the OBSERVED value by only — 1 14 percent
of the observed value. Notice the largest ~RE SIDUALS (—32.25and -32.75) are in time periods 29 and 39. The ESTIMAT E
value i for these time periods can be interpreted as “fitting”

— 133% of the OB S8RVED value. It seems then that this technique
is fairly “successful.” In this exa m ple at least , the
ESTIMATE value s predicted to approximatel y plus or minus 30%
of the ob served values at the very worst. Accurac y of this
type may not always ho ld , and further testin g of the techni que

- 
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is necessary, but this first example with “real ” data does
se rve as a source of encourage ment.

Confidence in the technique is enhan ced even mor e by the
calcula tion of another percen taqe. As each %RESIDUAL is
calcul a ted , it is checked to sea if it is equal to or less
than absol ute 20.00. The tine periods for this occurrence are
tabulated. The total is divided by the number of time periods
where a %RESIDUAL is calculated. In this example , there are
36 of 142 weeks , exc luding the first and last thr ee, wit h a
%RE SIDUAL . and of that total , 28 weeks had % R E S I D U & L s  of 20.00
or less. This means that, for this exam ple, the ESTIM A TE
value s predi cted , accoun ted fo r , or fitted, plus or minu s 20
percen t of the OB SERVED values 77 percent of the time. For
this -iata. if the general pattern continues, the analyst can
have 77% “confidence ,” or be 77% “ SUE. ” that the next observ ed
value has been predic ted within 20% over or under its actual
value by the ESTIMATE value.

Application of this “confidence” value  ma y be of
particula r use for forecasting several time periods ahead.
Time pe riods 40, 41, and £42 seem to fluctuate quit e wildy , due
perhaps to the calculation procedure. Experience wit h the
data indicates that such fluctuations are extremely
uncharac teristic and that the pre dicted values shou ld be
tempe red. Since 80% to 120% of the OBSERVED vaL ues are
predicted 77% of the time , it may be advisable t3 add 20% of
the ESTIMA TE tO the ESTIMATE if it is low or subtract 20% of
the ESTIMATE from the ESTIMATE if it is high . Unrefined and
in tui tive, this measure prod uces ESTIMATE values of 569.31 for
time pe riod 140, 592.97 for 41, an d 501.89 for the final time
period, 42. These values appear more in line with the pattern
of the data.

In regressi on analysis , the standar d er:~r of estimat e isused to determin e prediction accuracy. As is well known , it
nay be interpreted as an averag e residual , or the average
error in the regression analysis. A standard error of
est imate is calculated for the exponen tial smoothinq technique
for the sane pur pose. In exponentia l smoothing, the standard
e rror of estimate is calculated using only those time periods
that have both observed and predicted values. In the above
exampl e , both the first three ti le periods an d the last three
time periods are excl uded from the computation. The f i r s t
th ree are excluded because they have no predicted valu es and
the last three are not included since they hav e no observed
values. In this example, the standard error of estimate is
81.03.

Not onl y is this a confidence measure used to see how
closely the predicted values fit the observed values , but it
is a good measur e to use for refining the smoothing technique .
As differen t smoothin g coefficients are tried , a n d  d i f f e r e n t
numbers of observation s are used for the moving average , this
measure can be compared over the different trials until the
best fit is found.

____
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The standard error of estimate can also ~e used to adjustthe val ues forecasted several time per iods ahead. It is
certainly more rigorous than the method described previously
a n d  can be use d in the same fashion;  th at is, add the standard
error of estimate to low predicted values and subtract it from
hiqh predicted values. This giva s val ues of 555.46 for time
period ‘40, 635.18 for time per iod 41 , and 499.28 for the last
time period. -

— An additio nal aspect of the adaptive exponentia l
smoothing technique is its heu ristic quality. Not me ntioned
earlier, it is exercised under the MODEL heading in the
example. Observing, tabulating , and analyzing the pattern and
frequency of the different models may indicate sequences of
acti on . Each of the models is invoked under specific
conditions, so the model numbers themselves indicate rough
characteri stics of the data. Repetition of the sequences, if
any are foun d, particularly before and after known historical
occurrences, nay lead to classification schem es for the
sequences and in vestigation of the factors contributing to the
sequence s, Big po wer inv olvement , regional disturbances.
total number of actors acting, total event v~luma , total
number of tarqets receiving , differen t events enact ed in
various orders , and changes, differences , and rat ios among
some or all these factors may con tribute to understanding how
trouble som e, dangerous situations , requiring early warning,
emerge and dissipate.

~o begin the summary of this paper, the difference
between reqular and adaptive expo nenti al smoothin g is stated
once again . Reg ular exponentia l smoothing uses the same
expone ntial model for the enti re history of the data.
Ada ptive e xponential smoothing, however , invokes a different
model, one of four in the technique described here , for each
value in the data sequence .

The s t rengths  of second order adapt iv e exponent ial
smoothing in interna tional relations research are these.
First, and not mentioned prev iously, exponentia l smoothing
does not require “rich” data that other longitudinal
technique s, like time —series analysis(e.g., Bill, in
McClel land , et.al., 1971), require to be useful. Exponen tial
smoothing techniques can be used on any data collected at the
sa me intervals over time. Given the difficulties wit h getting
“good ” data in international affairs, this aspect is
appe aling.

Second , exponential smoothing is easy to  use and
interpret. It is necessary only to fit the saootninq model to
the data . This is done in an experimental fashio n until the
model is succesful . A succesfu]. model reduces error as much
as possibl e between the observed and predicted values .

Finally, adaptive exponenti al smoothin g accounts for
partu:bat~or.s in the data and does not discoun t then as noise.

I -~~-—~~~------—-~ ~ —----— —
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A d ap tive £tnoo thing attempts to capture the sudden , ani
• substanti ve chan ges in the data by using different smoothing

models. This requi res the analyst to know the data and to
develop models according to the demands of the data. The four
models discussed briefly here have proven fa irly successful ,
but tney may be adju sted or eliminated as more successful
models are developed .

Because of these properties , the techn ique seems well
suited for early warning research. It can be used for’
analyzing a dyad’s activit y or it can be used for ana lyz ing
tota l volume in the system. In addition to prediction , the
a dap t i ve technique can be used for monitorin g by observ ing
which models are invoked over time and in what order . Periods
of tine with several different models may be studied more
closely to determin e what circum stances are present in the
system , causing the va rious models to be invoked .

Adaptin g to fluct uations in the data seems to be the most
appe aling aspect of this type of smoothing for early warning
research. But forecastinq the dynamic of international
affairs is not without considerable difficulty. If analy sts
of interna tional affairs knew why the affairs moved through
time as they do, the n the forecasting diff iculty wou ld be
considerably diminished. Until that knowledge is developed ,
howe ve r, accumulating understanding on how international
affairs work is essential. The heuristic gualities of the
techni que disc ussed here lend them selves to that task.
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